Schedule of Accreditation

issued by

United Kingdom Accreditation Service

21 - 47 High Street, Feltham, Middlesex, TW13 4UN, UK

Locations covered by the organisation and their relevant activities

Laboratory locations:

Location details		Activity	Location code
Address	Contact: Mr N Buckeridge	Electrical	UK
Fir Tree Lane	Tel: +44 (0)116-231 7100	Pressure	
Groby	Fax: +44 (0)116-231 7101	Temperature	
Leicester	E-Mail:	Mass	
LE6 0FH	sensing.grobyukas@ge.com	Humidity	

Site activities performed away from the locations listed above:

Location details	Activity	Location code
The customer's site or premises must be suitable for the nature of the particular calibrations undertaken and will be the subject of contract review arrangements between the laboratory and the customer	<u>Pressure</u>	Site

ISO/IEC 17025:2005

Schedule of Accreditation issued by United Kingdom Accreditation Service

21 - 47 High Street, Feltham, Middlesex, TW13 4UN, UK

GE Druck Holdings Ltd

Issue No: 048 Issue date: 19 August 2011

Calibration performed by the Organisation at the locations specified

DETAIL OF ACCREDITATION

Measured Quantity Instrument or Gauge	Range	Calibration and Measurement Capability (CMC) Expressed as an Expanded Uncertainty $(k = 2)$	Remarks	Location Code
PRESSURE				
Gas pressure (absolute)				
Calibration of pressure measuring instruments and gauges and "Pressure equivalent" calibration of Dead Weight Testers (pressure balances supplied with an associated mass set) and Effective area calibration of Dead Weight Testers	3.5 kPa to 4 MPa 4 MPa to 7 MPa 7 MPa to 40 MPa	0.0032 % + 0.70 Pa 0.0040 % + 0.70 Pa 0.0050 % + 11 Pa	Calibration of pressure measuring devices with an electrical output may be undertaken.	UK and Site
Gas pressure (gauge)				
Calibration of pressure measuring instruments and gauges and "Pressure equivalent" calibration of Dead Weight Testers (pressure balances supplied with an associated mass set) and Effective area calibration of Dead Weight Testers	- 100 kPa to - 3.5 kPa - 3.5 kPa to 3.5 kPa 3.5 kPa to 4 MPa 4 MPa to 40 MPa	0.0032 % + 0.60 Pa 0.62 Pa 0.0032 % 0.0050 %		UK and Site
Hydraulic pressure (gauge) Calibration of pressure measuring instruments and gauges. "Pressure equivalent" calibration of Dead Weight Testers (Pressure balance with associated mass set). Effective area calibration of Dead Weight Testers.	0.5 MPa to 140 MPa 140 MPa to 500 MPa	0.0036 % + 0.12 ppm/MPa + 4.0 Pa 0.010 % + 0.030 ppm/MPa	Absolute pressure calibrations can be undertaken using gauge pressure generation and the associated barometric pressure with the additional uncertainty of 11 Pa	UK and Site

ISO/IEC 17025:2005

Schedule of Accreditation issued by United Kingdom Accreditation Service

21 - 47 High Street, Feltham, Middlesex, TW13 4UN, UK

GE Druck Holdings Ltd

Issue No: 048 Issue date: 19 August 2011

Measured Quantity Instrument or Gauge	Range	Calibration and Measurement Capability (CMC) Expressed as an Expanded Uncertainty (<i>k</i> = 2)	Remarks	Location Code
ELECTRICAL				
DC Resistance				
Generation				
Specific values	$\begin{array}{l} 1 \ m\Omega \\ 10 \ m\Omega \\ \Omega \\ 100 \ m\Omega \\ 1 \ \Omega \ \Omega \ \Omega \\ 1 \ \Omega \$	1.7 % 0.17 % 170 ppm 39 ppm 9.3 ppm 17 ppm 35 ppm 8.0 ppm 16 ppm 18 ppm 31 ppm 9.0 ppm 18 ppm 7.9 ppm 17 ppm 8.7 ppm 21 ppm 11 ppm 32 ppm 19 ppm 70 ppm 62 ppm		UK
Other values	0.1 Ω to 20 Ω 20 Ω to 10 kΩ	3 mΩ 110 ppm		
Measurement	$\begin{array}{l} 0 \ \Omega \ \text{to} \ 2 \ \Omega \\ 2 \ \Omega \ \text{to} \ 20 \ \Omega \\ 20 \ \Omega \ \text{to} \ 200 \ \Omega \\ 200 \ \Omega \ \text{to} \ 200 \ \Omega \\ 200 \ \Omega \ \text{to} \ 2 \ \text{k}\Omega \\ 2 \ \text{k}\Omega \ \text{to} \ 200 \ \text{k}\Omega \\ 200 \ \text{k}\Omega \ \text{to} \ 200 \ \text{k}\Omega \\ 200 \ \text{k}\Omega \ \text{to} \ 200 \ \text{k}\Omega \\ 200 \ \text{k}\Omega \ \text{to} \ 20 \ \text{M}\Omega \\ 2 \ \text{M}\Omega \ \text{to} \ 200 \ \text{M}\Omega \\ 20 \ \text{M}\Omega \ \text{to} \ 200 \ \text{M}\Omega \\ 20 \ \text{M}\Omega \ \text{to} \ 200 \ \text{M}\Omega \\ 2 \ \text{G}\Omega \end{array}$	30 ppm + 1.9 $\mu\Omega$ 4.8 ppm + 13 $\mu\Omega$ 3.5 ppm + 60 $\mu\Omega$ 4.0 ppm + 0.60 m Ω 3.7 ppm + 5.0 m Ω 4.2 ppm + 53 m Ω 6.7 ppm + 0.50 Ω 14 ppm + 6.6 Ω 85 ppm + 480 Ω 710 ppm + 4.8 k Ω		UK
DC Voltage				
Measurement	0 V to 200 mV 200 mV to 2 V 2 V to 20 V 20 V to 200 V 200 V to 1000 V	7.0 ppm +1. 2 μV 7.0 ppm + 1.2 μV 3.0 ppm + 3.5 μV 3.0 ppm + 33 μV 7.0 ppm +0.35 V		UK

ISO/IEC 17025:2005

Schedule of Accreditation issued by ted Kingdom Accreditation Servio

United Kingdom Accréditation Service 21 - 47 High Street, Feltham, Middlesex, TW13 4UN, UK

GE Druck Holdings Ltd

Issue No: 048 Issue date: 19 August 2011

Measured Quantity Instrument or Gauge	Range	Calibration and Measurement Capability (CMC) Expressed as an Expanded Uncertainty $(k = 2)$	Remarks	Location Code
DC Voltage (continued)				
Generation	0 mV to 200 mV 0.2 V to 2 V 2 V to 11 V 11 V to 20 V 20 V to 200 V 200 V to 1100 V	11 ppm + 2.0 μV 3.3 ppm 1.9 ppm 1.9 ppm 3.6 ppm 4.2 ppm		UK
DC Current				
Measurement	1 μA to 200 μA 200 μA to 2 mA 2 mA to 20 mA 20 mA to 200 mA 200 mA to 2 A 2 A to 10 A	8.9 ppm + 1.3 nA 8.6 ppm + 2.7 nA 5.5 ppm + 24 nA 23 ppm + 0.23 μA 130 ppm + 2.4 μA 80 ppm + 37 μA		UK
Generation	0 μA to 200 μA 200 μA to 2 mA 2 mA to 20 mA 20 mA to 200 mA 200 mA to 2 A	1.9 ppm + 1.9 nA 13 ppm 13 ppm 39 ppm 68 ppm		UK
AC Voltage				
Measurement	20 Hz to 55 Hz 1 mV to 200 mV 200 mV to 2 V 2 V to 20 V 20 V to 200 V 200 V to 1000 V	0.050 % 0.025 % 0.025 % 0.025 % 0.025 %		
	55 Hz to 305 Hz 1 mV to 200 mV 200 mV to 2 V 2 V to 20 V 20 V to 200 V 200 V to 1000 V	0.050 % 0.025 % 0.025 % 0.025 % 0.025 %		
	305 Hz to 1 kHz 1 mV to 200 mV 200 mV to 2 V 2 V to 20 V 20 V to 200 V 200 V to 1000 V	0.025 % 0.025 % 0.025 % 0.025 % 0.025 % 0.026 %		
	1 kHz to 10 kHz 1 mV to 200 mV 200 mV to 2 V 2 V to 20 V 20 V to 200 V 200 V to 1000 V	0.050 % 0.030 % 0.025 % 0.026 % 0.030 %		

ISO/IEC 17025:2005

Schedule of Accreditation ^{issued by} ted Kingdom Accreditation Servio

United Kingdom Accréditation Service 21 - 47 High Street, Feltham, Middlesex, TW13 4UN, UK

GE Druck Holdings Ltd

Issue No: 048 Issue date: 19 August 2011

Measured Quantity Instrument or Gauge	Range	Calibration and Measurement Capability (CMC) Expressed as an Expanded Uncertainty (<i>k</i> = 2)	Remarks	Location Code
AC Voltage (continued)				UK
Generation	10 Hz to 40 Hz 0.1 mV to 2 mV 2 mV to 20 mV 20 mV to 2 V 2 V to 20 V 20 V to 200 V 40 Hz to 500 Hz 0.1 mV to 2 mV 2 mV to 20 mV 20 mV to 20 mV 20 mV to 20 V 20 V to 200 V 500 Hz to 1 kHz 0.1 mV to 2 mV 2 mV to 20 mV 20 W to 20 V 20 V to 200 V 500 Hz to 1 kHz 0.1 mV to 2 mV 2 mV to 20 mV 20 mV to 20 mV 20 mV to 20 V 20 V to 200 V 1 kHz to 10 kHz 0.1 mV to 2 mV 2 mV to 20 mV 20 mV to 20 mV 20 mV to 20 mV 20 W to 20 V 2 V to 20 V 2 V to 20 V 2 V to 20 V 1 kHz to 10 kHz 2 mV 2 mV to 20 mV 10 kHz 2 mV 2 mV 100 mV 100 V 55 Hz to 500 Hz 500 Hz to 1 kHz 1 kHz	3.0 % 0.30 % 0.12 % 160 ppm 250 ppm 250 ppm 3.0 % 0.30 % 0.12 % 120 ppm 110 ppm 110 ppm 3.0 % 0.30 % 0.12 % 120 ppm 90		

ISO/IEC 17025:2005

Schedule of Accreditation issued by United Kingdom Accreditation Service

21 - 47 High Street, Feltham, Middlesex, TW13 4UN, UK

GE Druck Holdings Ltd

Issue No: 048 Issue date: 19 August 2011

Measured Quantity Instrument or Gauge	Range	Calibration and Measurement Capability (CMC) Expressed as an Expanded Uncertainty $(k = 2)$	Remarks	Location Code
AC Current				UK
Measurement	55 Hz to 305 Hz 10 μA to 200 μA 200 μA to 2 mA 2 mA to 20 mA 20 mA to 20 mA 200 mA to 2 A 2 A to 10 A	0.25 % 0.25 % 0.25 % 0.25 % 0.25 % 0.25 % 0.30 %		
	305 Hz to 1 kHz 10 μA to 200 μA 200 μA to 2 mA 2 mA to 20 mA 20 m A to 200 mA 200 mA to 2 A 2 A to 10 A	0.25 % 0.25 % 0.25 % 0.25 % 0.25 % 0.25 % 0.30 %		
	1 kHz to 5 kHz 10 μA to 200 μA 200 μA to 2 mA 2 mA to 20 mA 20 m A to 200 mA 200 mA to 2 A 2 A to 10 A	0.25 % 0.25 % 0.25 % 0.25 % 0.25 % 0.35 %		
Generation	55 Hz to 400 Hz 10 μA to 200 μA 200 μA to 2 mA 2 mA to 20 mA 20 mA to 200 mA 200 mA to 1 A	0.20 % 0.052 % 0.050 % 0.050 % 0.050 %		
	400 Hz to 1 kHz 10 μA to 200 μA 200 μA to 2 mA 2 mA to 20 mA 20 mA to 200 mA 200 mA to 1 A	0.20 % 0.050 % 0.050 % 0.050 % 0.050 %		
	1 kHz to 5 kHz 10 μA to 200 μA 200 μA to 2 mA 2 mA to 20 mA 20 mA to 200 mA 200 mA to 1 A	0.20 % 0.16 % 0.090 % 0.050 % 0.15 %		
Frequency	1 MHz, 5 MHz and 10 MHz 1 Hz to 1 GHz	7.0 in 10 ¹¹ 0.20 ppm	Measurement and generation of repetitive waveforms.	UK

ISO/IEC 17025:2005

Schedule of Accreditation issued by United Kingdom Accreditation Service

21 - 47 High Street, Feltham, Middlesex, TW13 4UN, UK

GE Druck Holdings Ltd

Issue No: 048 Issue date: 19 August 2011

Measured Quantity Instrument or Gauge	Range	Calibration and Measurement Capability (CMC) Expressed as an Expanded Uncertainty (<i>k</i> = 2)	Remarks	Location Code
Temperature indicators, calibration by electrical simulation				UK
Base metal thermocouples	- 210 °C to + 1360 °C	0.10 °C	Excluding cold junction compensation	
Nobel metal thermocouples	- 50 °C to + 2300 °C	0.23 °C	Excluding cold junction compensation	
Cold junction compensation	Ambient temperature 18 °C to 30 °C	0.40 °C		
Resistance thermometers	- 200 °C to + 840 °C	0.20 °C		
Temperature simulators, calibration by electrical simulation				
Base metal thermocouples	- 210 °C to + 1360 °C	0.070 °C	Excluding cold junction compensation	
Nobel metal thermocouples	- 50 °C to + 2300 °C	0.15 °C	Excluding cold junction compensation	
Cold junction compensation	Ambient temperature 18 °C to 30 °C	0.40 °C		
	At zero °C	0.30 °C		
Resistance thermometers	- 200 °C to + 840 °C	0.055 °C		
MASS	0 g to 2 g 5 g 10 g 20 g 50 g 100 g 200 g 500 g 1 kg 2 kg 5 kg 10 kg	0.040 mg 0.060 mg 0.060 mg 0.070 mg 0.070 mg 0.10 mg 0.10 mg 2.0 mg 2.5 mg 5.0 mg 10 mg	Intermediate values can be calibrated with an uncertainty equal to the uncertainty of the next higher nominal value.	UK
TEMPERATURE				
Resistance thermometers and electronic thermometers with PRT, thermocouple or thermistor sensors	-60 °C to -40 °C -40 °C to 0 °C 0.01 °C (Triple Point of Water) 0 °C to 60 °C 60 °C to 150 °C 150 °C to 250 °C	0.048 °C 0.022 °C 0.0070 °C 0.018 °C 0.023 °C 0.039 °C	Calibration by comparison	UK

ISO/IEC 17025:2005

Schedule of Accreditation issued by United Kingdom Accreditation Service

21 - 47 High Street, Feltham, Middlesex, TW13 4UN, UK

GE Druck Holdings Ltd

Issue No: 048 Issue date: 19 August 2011

Measured Quantity Instrument or Gauge	Range	Calibration and Measurement Capability (CMC) Expressed as an Expanded Uncertainty $(k = 2)$	Remarks	Location Code
HUMIDITY				
Relative humidity meters	11 %rh 33 %rh 54 %rh 75 %rh 90 %rh For the temperature range 21 °C ± 3 °C	2.2 %rh 2.2 %rh 2.7 %rh 2.7 %rh 2.9 %rh		UK
END				